
modelstore

Neal Lathia

Nov 07, 2020

CONTENTS:

1 Installing the modelstore library 3

2 Quick Start 5
2.1 Create a model store instance . 5
2.2 Export a model . 5
2.3 Upload the model to cloud storage . 6
2.4 Download a model from cloud storage . 6

3 The Model Store Structure 7
3.1 Model Archive & Meta Data . 7
3.2 Model Domains . 8
3.3 File Storage Structure . 8

4 Supported Machine Learning Libraries 9
4.1 CatBoost . 9
4.2 Keras . 10
4.3 PyTorch . 10
4.4 Scikit-Learn . 10
4.5 Tensorflow . 11
4.6 Transformers . 11
4.7 XGBoost . 12

5 Scikit-Learn Example 13

6 License 15

7 Contact 17

i

ii

modelstore

modelstore is a Python library that allows you to version, export, and save/retrieve machine learning models to and
from your filesystem or a cloud storage provider (AWS or GCP).

The library’s ModelStore automates versioning your models, storing them in a structured way, retrieving them, and
collecting meta data about the Python runtime that was used to train them.

CONTENTS: 1

modelstore

2 CONTENTS:

CHAPTER

ONE

INSTALLING THE MODELSTORE LIBRARY

This library can be installed via pip:

pip install modelstore

We recommend installing this inside a virtual environment.

These docs were last updated for version 0.0.2.

3

modelstore

4 Chapter 1. Installing the modelstore library

CHAPTER

TWO

QUICK START

This library’s ModelStore enables you to export trained ML models and store it to your choice of storage.

2.1 Create a model store instance

modelstore currently supports storing models to:

• Your local file system

• Google Cloud buckets: The library assumes that you already have set up a Google Cloud project and have
created a cloud storage bucket.

• AWS S3 buckets: As above, this library assumes that you have already set up a project and have created an s3
bucket.

To save your models, create a model store instance with:

from modelstore import ModelStore

ms = ModelStore.from_gcloud(
project_name="my-project",
bucket_name="my-bucket",

)

For AWS, use ModelStore.from_aws_s3(bucket_name="<s3-bucket>")

For your local file system, use ModelStore.from_file_system(root="<path>")

2.2 Export a model

The modelstore library detects which types of machine learning libraries you have installed, and automatically sets
up functions that enable you to export a trained model.

All of the functions have the form ms.<library-name>.create_archive().

For example, to export a scikit-learn model, use:

archive = ms.sklearn.create_archive(model=my_model)

This function will create a file called artifacts.tar.gz in your current working directory, which contains the
exported model.

To read more about the supported libraries, see: Supported Machine Learning Libraries.

5

https://cloud.google.com/storage/docs/creating-buckets
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html

modelstore

2.3 Upload the model to cloud storage

To save your models into your chosen storage, use upload():

rsp = ms.upload(domain="example-model", archive)

When you upload a model, you need to specify a domain. This is the word we use to group several models to-
gether. For example, let’s assume you are training several models to predict whether an email is spam. Setting
domain="spam-detection" will store all of those models together.

To read more about how this library organises models, see The Model Store Structure.

2.4 Download a model from cloud storage

To retrieve a model from your chosen storage, use download():

file_path = ms.download(local_path=".", domain="example-model", model_id="model-id")

This function will download the artifacts.tar.gz that you stored, extract all the files from it, and remove the
tar file.

If you do not provide a model_id parameter, the download() function will default to the last model that was
stored for the given domain.

6 Chapter 2. Quick Start

CHAPTER

THREE

THE MODEL STORE STRUCTURE

This library’s model store interacts with a backend of your chosing. The library currently supports:

• A local directory

• Google Cloud Storage

• AWS S3 Buckets

This library stores models in cloud buckets using a pre-defined structure.

3.1 Model Archive & Meta Data

When you use create_archive(), an artifacts.tar.gz file is created in the current working directory.
This archive contains:

1. Any files that were dumped from your model,

2. A "python-info.json" file that enumerates the version of the Python library of the model you are export-
ing.

3. Files containing any additional data you want to add to the archive.

When you upload() a model archive, this library uploads the archive to cloud storage, and creates and returns a
dictionary containing meta-data about the model.

The meta-data includes:

• A unique UUID4 for your model;

• Details about where the model is being uploaded to (the bucket and prefix);

• The Python runtime that was used (e.g., “python:3.7.0”)

• The user who ran the training.

• Versions for the Python library and key dependencies.

7

https://cloud.google.com/storage
https://aws.amazon.com/s3/
https://docs.python.org/3/library/getpass.html#getpass.getuser

modelstore

3.2 Model Domains

A domain is the word we use to group models, that are all intended for the same end-usage, together.

Under the hood, this is just a string, so it is up to you how you would like to use it; it is required because this library
stores models by domain.

3.3 File Storage Structure

When you pick a backend that stores data in files (e.g., Cloud Storage Buckets), the files are stored with a pre-defined
structure.

The top-level, root prefix that this library hard-codes is operatorai-model-store.

When you create and upload a model archive, this library will upload three files to different places in the bucket.

1. The artifacts archive will be uploaded to: root/<domain>/<datetime>/archive.tar.gz, where the
datetime has the form "%Y/%m/%d/%H:%M:%S" - denoting the time when the model was uploaded. 2. The library
creates a dictionary of meta-data about your model. This will be uploaded to root/<domain>/versions/
<model-id>.json. 3. This same meta-data is also stored in root/<domain>/latest.json, which tracks
the _last_ model that was uploaded to the model store.

3.3.1 Example

Let’s imagine you’re training a text classifier to detect whether some customer text is about “refunds.”

Over time, you may end up re-training this classifier several times, with newer data or different models types; however,
you still need a way to denote that all of these models were about detecting refund requests.

In this case, you could set the domain="customer-refunds".

Models that are exported in this domain will be stored to:

<root>/<domain>/<time/of/upload>/artifacts.tar.gz
operatorai-model-store/customer-refunds/2020/08/30/23:29:28/artifacts.tar.gz

8 Chapter 3. The Model Store Structure

CHAPTER

FOUR

SUPPORTED MACHINE LEARNING LIBRARIES

This library currently supports:

• CatBoost

• Keras

• PyTorch

• Scikit-Learn

• Tensorflow

• Transformers

• XGBoost

The common pattern, across all supported libraries, is to:

Create an instance of the model store
from modelstore import ModelStore

ms = ModelStore.from_gcloud(
project_name="my-project",
bucket_name="my-bucket",

)

Export your model by calling `create_archive()`
archive = ms.<library-name>.create_archive(**kwargs)

Upload your model by calling `upload()`
meta_data = ms.upload("model-domain", archive)

4.1 CatBoost

To export a CatBoost model, use:

Train your model
model = ctb.CatBoostClassifier(loss_function="MultiClass")
model.fit(x, y)

Create an archive
archive = ms.catboost.create_archive(model=clf, pool=df)

This will add a multiple formats of your model to the archive:

9

https://catboost.ai/
https://keras.io/
https://pytorch.org/
https://scikit-learn.org
https://www.tensorflow.org/
https://github.com/huggingface/transformers
https://xgboost.readthedocs.io
https://catboost.ai/

modelstore

• CatBoost binary format

• JSON

• Onnx

The pool argument is required if you are training a multi class model.

The archive will also contain a model_attributes.json file with all of the attributes of the model.

4.2 Keras

To export a Keras model, use:

Train your model
model = keras.Model(inputs, outputs)
model.compile(optimizer="adam", loss="mean_squared_error")
model.fit(X_train, y_train, epochs=10)
...

Create and upload an archive
archive = ms.keras.create_archive(model=net, optimizer=optim)
rsp = ms.upload("model-domain", archive)

This will add two dumps of the model into the archive; based on calling model.to_json() and model.save().

4.3 PyTorch

To export a PyTorch model, use:

Train your model
net = ExampleNet()
optim = ExampleOptim()
...

Create and upload an archive
archive = ms.pytorch.create_archive(model=net, optimizer=optim)
rsp = ms.upload("model-domain", archive)

This will add two dumps of the model into the archive; a checkpoint.pt that contains the net and optimizer’s state
(e.g., to continue training at a later date), and a model.pt that is the result of torch.save with the model only
(e.g., for inference).

4.4 Scikit-Learn

To export a scikit-learn model, use:

Train your model
clf = RandomForestClassifier(n_estimators=10)
clf = clf.fit(X, Y)

Create an archive
archive = ms.sklearn.create_archive(model=clf)

10 Chapter 4. Supported Machine Learning Libraries

https://catboost.ai/docs/concepts/python-reference_catboost_save_model.html
https://keras.io/
https://pytorch.org/
https://scikit-learn.org

modelstore

This will add a joblib dump of the model into the archive.

4.5 Tensorflow

To export a tensorflow model, use:

Train your model
model = tf.keras.models.Sequential(

[
tf.keras.layers.Dense(5, activation="relu", input_shape=(10,)),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(1),

]
)
model.compile(optimizer="adam", loss="mean_squared_error")
model.fit(X_train, y_train, epochs=10)

Create an archive
archive = model_store.tensorflow.create_archive(model=model)

This will both save the weights (as a checkpoint file) and export/save the entire model.

4.6 Transformers

To export a transformers model, use:

Get a pre-trained model and fine tune it
model_name = "distilbert-base-cased"
config = AutoConfig.from_pretrained(

model_name, num_labels=2, finetuning_task="mnli",
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(

model_name, config=config,
)

Create an archive
archive = model_store.transformers.create_archive(

config=config, model=model, tokenizer=tokenizer,
)

The config and tokenizer parameters are optional. This will use the save_pretrained() function to save
your model.

4.5. Tensorflow 11

https://www.tensorflow.org/
https://github.com/huggingface/transformers

modelstore

4.7 XGBoost

To export an XGBoost model, use:

Train your model
bst = xgb.train(param, dtrain, num_round)

Create and upload an archive
archive = ms.xgboost.create_archive(model=bst)
rsp = ms.upload("model-domain", archive)

This will add two dumps of the model into the archive; a model dump (in an interchangeable format, for loading again
later), and a model save (in JSON format, which, to date, is experimental).

12 Chapter 4. Supported Machine Learning Libraries

https://xgboost.readthedocs.io

CHAPTER

FIVE

SCIKIT-LEARN EXAMPLE

This example is based on the GradientBoostingRegressor tutorial from the scikit-learn website:

import json
import os

from sklearn.datasets import load_diabetes
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split

from modelstore import ModelStore

def train():
diabetes = load_diabetes()
X_train, X_test, y_train, y_test = train_test_split(

diabetes.data, diabetes.target, test_size=0.1, random_state=13
)
params = {

"n_estimators": 500,
"max_depth": 4,
"min_samples_split": 5,
"learning_rate": 0.01,
"loss": "ls",

}
reg = GradientBoostingRegressor(**params)
reg.fit(X_train, y_train)
Skipped for brevity (but important!) evaluate the model
return reg

if __name__ == "__main__":
In this demo, we train a GradientBoostingRegressor
using the same approach described on the scikit-learn website.
Replace this with the code to train your own model
model = train()

The modelstore library currently assumes you have already created
a Cloud Storage bucket and will raise an exception if it doesn't exist

This example assumes that you have the GCP project name and bucket id
saved as environment variables - replace the os.environ below with
your values
store = ModelStore.from_gcloud(

project_name=os.environ["GCP_PROJECT_ID"],

(continues on next page)

13

https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html#sphx-glr-auto-examples-ensemble-plot-gradient-boosting-regression-py

modelstore

(continued from previous page)

bucket_name=os.environ["GCP_BUCKET_NAME"],
)

Create an archive containing the trained model
archive = store.sklearn.create_archive(model=model)

Optional: the archive that was created is called "artifacts.tar.gz"
You can add more files into this archive if you want

Upload the archive to the model store
The first string is the model's domain - which helps you to group
many models that are trained on the same target together
meta = store.upload("sklearn-diabetes-boosting-demo", archive)

Optional: the artifacts.tar.gz file is generated into the current
working directory and you can remove them if you do not
need a local copy
os.remove(archive)

The upload returns meta-data about the model that was uploaded
This meta-data has also been sync'ed into the cloud storage
bucket
print(" Finished uploading model!")
print(json.dumps(meta, indent=4))

Download the model back!
target = f"downloaded-{model_type}-model"
os.makedirs(target, exist_ok=True)
model_path = model_store.download(

local_path=target,
domain=model_domain,
model_id=meta["model"]["model_id"],

)
print(f" Downloaded the model back to {model_path}")

14 Chapter 5. Scikit-Learn Example

CHAPTER

SIX

LICENSE

Copyright 2020 Neal Lathia

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

15

http://www.apache.org/licenses/LICENSE-2.0

modelstore

16 Chapter 6. License

CHAPTER

SEVEN

CONTACT

If you have any questions or feedback, feel free to email me: neal.lathia@gmail.com.

If you want to follow along as this (and other) tools are developed, sign up here.

17

https://operatorai.substack.com

	Installing the modelstore library
	Quick Start
	Create a model store instance
	Export a model
	Upload the model to cloud storage
	Download a model from cloud storage

	The Model Store Structure
	Model Archive & Meta Data
	Model Domains
	File Storage Structure

	Supported Machine Learning Libraries
	CatBoost
	Keras
	PyTorch
	Scikit-Learn
	Tensorflow
	Transformers
	XGBoost

	Scikit-Learn Example
	License
	Contact

