
modelstore

Neal Lathia

Dec 20, 2022

BASIC USAGE

1 Installing the modelstore library 3

2 Quick Start 5

3 Uploading a scikit-learn model 7

4 Key Concepts 9

5 Supported Machine Learning Libraries 11

6 Supported Storage Types 13

7 Additional upload functionality 15

8 Additional download functionality 17

9 Retrieving model and domain information 19

10 Deleting Models 21

11 Controlling model states 23

12 Modelstore CLI commands 25

13 Troubleshooting 27

14 License 31

15 Contact 33

i

ii

modelstore

modelstore is a machine learning model registry Python library.

By saving your models using modelstore, you can:

• Version your models;

• Upload model artefacts to your choice of storage;

• Collect meta data about the models your uploading;

• Control models’ states;

• Load models straight from storage back into memory

BASIC USAGE 1

modelstore

2 BASIC USAGE

CHAPTER

ONE

INSTALLING THE MODELSTORE LIBRARY

This library can be installed via pip:

pip install modelstore

You can find the latest version here: modelstore on Pypi.

You can also build the library directly from source by checking it out from Github.

3

https://pypi.org/project/modelstore/
https://github.com/operatorai/modelstore

modelstore

4 Chapter 1. Installing the modelstore library

CHAPTER

TWO

QUICK START

2.1 Install using pip, import in your code

The model store library is available via Pypi:

pip install modelstore

In your code, import ModelStore with:

from modelstore import ModelStore

2.2 Create a model store instance and point it to your storage

The model store library supports storing models to blob storage across different cloud providers:

• A file system;

• Google Cloud storage buckets

• AWS s3 buckets

• Azure blob storage containers

• MinIO object storage

Create a model store instance by using one of the following factory methods.

File System Storage

model_store = ModelStore.from_file_system(root_directory="/path/to/directory")

Google Cloud Storage Bucket

model_store = ModelStore.from_gcloud(
project_name="my-project",
bucket_name="my-bucket",

)

AWS s3 Bucket

model_store = ModelStore.from_aws_s3(
bucket_name="my-bucket",

)

5

modelstore

Azure Blob Storage

model_store = ModelStore.from_azure(container_name="my-container-name")

2.3 Upload a model to the model store

Model store has an upload() function that will create an archive containing your model and upload it to your storage.

Whenever you upload a model, you need to specify which domain it belongs to. A “domain” is a string that model
store uses to group several models that are for the same end-usage together.

For example, let’s say you’ve trained a scikit-learn model (which is stored in a variable called clf) that is going to be
used in a spam classifier domain.

To store the model, use:

meta_data = model_store.upload("spam-detection", model=clf)

The upload() function returns a dictionary containing meta data about your model - including the id that has been
assigned to it, which is in meta_data["model"]["model_id"].

2.4 Load a model from the model store

Once a model has been stored, you can load it straight from storage back into memory using model store’s load()
function.

clf = model_store.load("spam-detection", model_id="abcd-abcd-abdc")

6 Chapter 2. Quick Start

CHAPTER

THREE

UPLOADING A SCIKIT-LEARN MODEL

This example is based on the GradientBoostingRegressor tutorial from the scikit-learn website:

import json
import os

from sklearn.datasets import load_diabetes
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split

from modelstore import ModelStore

def train():
diabetes = load_diabetes()
X_train, X_test, y_train, y_test = train_test_split(

diabetes.data, diabetes.target, test_size=0.1, random_state=13
)
params = {

"n_estimators": 500,
"max_depth": 4,
"min_samples_split": 5,
"learning_rate": 0.01,
"loss": "ls",

}
reg = GradientBoostingRegressor(**params)
reg.fit(X_train, y_train)
Skipped for brevity (but important!) evaluate the model
return reg

if __name__ == "__main__":
In this demo, we train a GradientBoostingRegressor
using the same approach described on the scikit-learn website.
Replace this with the code to train your own model
model = train()

The modelstore library currently assumes you have already created
a Cloud Storage bucket and will raise an exception if it doesn't exist

This example assumes that you have the GCP project name and bucket id
(continues on next page)

7

https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html#sphx-glr-auto-examples-ensemble-plot-gradient-boosting-regression-py

modelstore

(continued from previous page)

saved as environment variables - replace the os.environ below with
your values
model_store = ModelStore.from_gcloud(

project_name=os.environ["GCP_PROJECT_ID"],
bucket_name=os.environ["GCP_BUCKET_NAME"],

)

Upload the model
meta_data = model_store.upload(

"sklearn-diabetes-boosting-demo",
model=model

)

The upload returns meta-data about the model that was uploaded
This meta-data has also been sync'ed into the cloud storage
bucket
print(" Finished uploading model!")
print(json.dumps(meta_data, indent=4))

Download the model back!
target = f"downloaded-{model_type}-model"
os.makedirs(target, exist_ok=True)
model_path = model_store.download(

local_path=target,
domain=model_domain,
model_id=meta["model"]["model_id"],

)
print(f" Downloaded the model back to {model_path}")

8 Chapter 3. Uploading a scikit-learn model

CHAPTER

FOUR

KEY CONCEPTS

The modelstore library is built around a few key concepts.

4.1 Model Archive

When you upload a model, an artifacts.tar.gz file is created and then uploaded to your storage. This archive
contains:

1. Files that are dumps from your model,

2. A "python-info.json" file that enumerates the version of the Python library of the model you are exporting.

4.2 Model Meta-data

The upload() function returns a dictionary containing meta-data about the model, which includes an id for your model.

The meta-data includes:

• A unique id for your model;

• Details about where the model is being uploaded to (the bucket and prefix);

• The Python runtime that was used (e.g., “python:3.7.0”)

• The user who ran the upload.

• Versions for the Python library and key dependencies.

4.3 Domains

A domain is how modelstore denotes a group of models, that are all intended for the same end-usage. When you
upload a model to the store, you will add it to a domain.

The model store library then allows you to list the models that are in a domain and retrieve specific models (e.g., the
latest one).

Under the hood, a domain is just a string, so it is up to you how you would like to use it.

9

https://docs.python.org/3/library/getpass.html#getpass.getuser

modelstore

4.4 Model State

A model state is a tag that you can use to control the lifecycle of a model in a given domain.

For example, you may want to have some models tagged as being in state “production” or state “shadow.” You can
achieve this by creating a state and then setting a model’s state.

Under the hood, a model state name is just a string, so it is up to you how you would like to use it.

4.5 Storage

When you pick a backend that stores data in files (e.g., Cloud Storage Buckets), the files are stored with a pre-defined
structure.

The top-level, root prefix that this library hard-codes is operatorai-model-store.

When you create and upload a model archive, this library will upload three files to different places in the bucket.

1. The artifacts archive will be uploaded to: root/<domain>/<datetime>/archive.tar.gz, where the date-
time has the form "%Y/%m/%d/%H:%M:%S" - denoting the time when the model was uploaded.

2. The library creates a dictionary of meta-data about your model. This will be uploaded to root/<domain>/
versions/<model-id>.json.

3. This same meta-data is also stored in root/<domain>/latest.json, which tracks the _last_ model that was
uploaded to the model store.

10 Chapter 4. Key Concepts

CHAPTER

FIVE

SUPPORTED MACHINE LEARNING LIBRARIES

This library currently supports several different machine learning libraries. To save models trained with them, you
should use the upload function:

model_store.upload("domain", <kwargs>)

Table 1: Supported machine learning libraries
Library Required kwargs Example code
Annoy model Annoy Example
CatBoost model, pool (for classification) Catboost Example
FastAI learner FastAI Example
Gensim model Word2vec Example
Keras model, optimizer Keras Example
LightGBM model LightGBM Example
Mxnet model, epoch Mxnet Example
Onnx model Onnx Example
Prophet model Prophet Example
PySpark ML Lib model PySpark Example
PyTorch model, optimizer PyTorch Example
PyTorch Lightning model, trainer PyTorch Lightning Exam-

ple
Shap explainer Shap Example
scikit-learn model scikit-learn Example
skorch model skorch Example
Tensorflow model Tensorflow Example
Transformers config, model, tokenizer Transformers Example
XGBoost model XGBoost Example

5.1 What to do if a library is not supported

If you are using a machine learning library that is not listed above, you can still use model store to upload and version
your models by uploading a file. You will not be able to use load() but you will be able to download() them back.

model_path = save_model()

model_store.upload("my-domain", model=model_path)

You can also:

11

https://github.com/spotify/annoy
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/annoy_example.py
https://catboost.ai/
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/catboost_example.py
https://github.com/fastai/fastai/
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/fastai_example.py
https://radimrehurek.com/gensim/
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/gensim_example.py
https://keras.io/
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/keras_example.py
https://lightgbm.readthedocs.io
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/lightgbm_example.py
https://mxnet.apache.org
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/mxnet_example.py
https://onnx.ai/
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/onnx_example.py
https://facebook.github.io/prophet/
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/prophet_example.py
https://spark.apache.org/mllib/
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/pyspark_example.py
https://pytorch.org/
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/pytorch_example.py
https://www.pytorchlightning.ai/
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/pytorch_lightning_example.py
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/pytorch_lightning_example.py
https://shap.readthedocs.io/en/latest/
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/shap_example.py
https://scikit-learn.org
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/sklearn_example.py
https://skorch.readthedocs.io/en/stable/
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/skorch_example.py
https://www.tensorflow.org/
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/tensorflow_example.py
https://github.com/huggingface/transformers
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/transformers_example.py
https://xgboost.readthedocs.io
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/xgboost_example.py
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/libraries/raw_file_example.py

modelstore

• Let us know by raising an issue

• Add support for the library by following this guide.

12 Chapter 5. Supported Machine Learning Libraries

https://github.com/operatorai/modelstore/issues
https://github.com/operatorai/modelstore/blob/main/modelstore/models/CONTRIBUTING.md

CHAPTER

SIX

SUPPORTED STORAGE TYPES

This library currently supports several places where you can save your models. You specify the storage type when you
create a ModelStore instance:

Table 1: Supported storage types
Storage Requires Example code
AWS s3 The name of an existing s3 bucket AWS Example
MinIO s3 storage The name of an existing bucket and access credentials MinIO Example
Azure Container The name of an existing container Azure Example
Google Cloud Storage The name of an existing bucket Cloud Storage Example
File system A path File system Example

6.1 File system storage

The file system model storage assumes that (a) the root directory exists, and (b) the library user has permission to write
to it.

If you want to create the root directory if it does not exist, pass along the create_directory=True argument.

model_store = ModelStore.from_file_system(
root_directory="/path/to/directory",
create_directory=True,

)

13

https://aws.amazon.com/s3/
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/modelstores.py#L36-L41
https://min.io/
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/modelstores.py#L44-L51
https://docs.microsoft.com/en-us/azure/container-instances/
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/modelstores.py#L54-L63
https://cloud.google.com/storage
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/modelstores.py#L66-L74
https://github.com/operatorai/modelstore/blob/main/examples/examples-by-ml-library/modelstores.py#L85

modelstore

14 Chapter 6. Supported Storage Types

CHAPTER

SEVEN

ADDITIONAL UPLOAD FUNCTIONALITY

7.1 Uploading more than one model file

This library supports uploading multiple models, as long as their keyword arguments do not overlap.

For example, you might want to upload a classifier and a shap explainer together:

clf = RandomForestClassifier()
clf.fit(X_train, y_train)

explainer = shap.TreeExplainer(model)

model_store.upload("my-domain", model=model, explainer=explainer)

When you load these models, model store returns a dictionary with both models:

models = modelstore.load(model_domain, model_id)
clf = models["sklearn"]
explainer = models["shap"]

7.2 Uploading extra files with the model

This library supports uploading a model with one or more extra files.

For example, you might want to upload a classifier and the predictions it made on the test set.

clf = RandomForestClassifier()
clf.fit(X_train, y_train)

predictions = clf.predict(X_test)
file_path = "predictions.csv"
numpy.savetxt(file_path, predictions, delimiter=",")

modelstore.upload("my-domain", model=model, extras=file_path)

When you load these models, the extra files are not loaded into memory:

clf = modelstore.load(model_domain, model_id)

15

modelstore

16 Chapter 7. Additional upload functionality

CHAPTER

EIGHT

ADDITIONAL DOWNLOAD FUNCTIONALITY

8.1 Providing read-only access

The AWS s3, Google GCS, Azure Containers storage types assume that (a) the bucket/container exists, and (b) the
library user has both read and write permissions.

As of 0.0.74, modelstore also supports read-only access to public Google Cloud Storage buckets.

8.2 Download a model from the model store

If you would rather download the model, and not load it into memory, you can use model store’s download() function.

file_path = model_store.download(
local_path=".", # Where to download the model to
domain="example-model", # The model's domain
model_id="model-id" # Optional; the ID of the specific model

)

17

modelstore

18 Chapter 8. Additional download functionality

CHAPTER

NINE

RETRIEVING MODEL AND DOMAIN INFORMATION

This library enables you to query your model registry programmatically.

The examples below assume you have created a model store instance already:

from modelstore.model_store import ModelStore

model_store = ModelStore.from_aws_s3(bucket_name)

9.1 Model domains

Models are uploaded into domains: a domain is created when you upload your first model to it. You can list all of the
existing domains and get information about a specific domain with:

model_domains = model_store.list_domains()

meta_data = model_store.get_domain("my-domain")

9.2 Model states

Model states are tags that can be used to control the lifecycle of models in a domain. To see the list of model states that
have been created, use:

model_states = model_store.list_model_states()

Note: there are some reserved states that modelstore uses to, for example, keep track of model IDs that have been
deleted.

9.3 Model versions

Models are uploaded into domains: a domain is created when you upload your first model to it. You can list all of the
existing domains and get information about a specific domain with:

List all models
model_ids = model_store.list_versions("my-domain")

(continues on next page)

19

modelstore

(continued from previous page)

List models with a given state
prod_model_ids = model_store.list_versions("my-domain", state_name="production")

9.4 Models

The main thing you can do with a model is download or load it back. You can also retrieve information about a specific
model, and delete models from the registry.

Get information about a specific model
meta_data = model_store.get_model_info("my-domain", "my-model")

20 Chapter 9. Retrieving model and domain information

CHAPTER

TEN

DELETING MODELS

Deleting a model removes the files from the registry. If you query for a model that has been deleted, a
ModelDeletedException is raised.

Delete a model
model_store.delete_model("my-domain", "my-model", skip_prompt=True)

Will raise a ModelDeletedException
meta_data = model_store.get_model_info("my-domain", "my-model")

21

modelstore

22 Chapter 10. Deleting Models

CHAPTER

ELEVEN

CONTROLLING MODEL STATES

This library enables you to control models by setting their state. For example, you may want to set a model to have
state “production.” You can then query the model store for models by state, and change model states.

The examples below assume you have created a model store instance already:

from modelstore.model_store import ModelStore

model_store = ModelStore.from_aws_s3(bucket_name)

11.1 Create a state

Before doing anything with a model state, you need to create it. This is a one-time operation.

production_state = "production"

model_store.create_model_state(production_state)

11.2 Set and unset a model’s state

Once a state has been created, you can add a model to a state. You can add a model to more than one state, and you can
add more than one model to a state.

model_domain = "my-domain"
model_id = "my-model-id"
production_state = "production"

model_store.set_model_state(model_domain, model_id, state_name)

To unset a model’s state, you can use:

model_store.remove_model_state(model_domain, model_id, state_name)

23

modelstore

11.3 Find models by state

After setting the state of one or more models, you can find them by adding the state name to the list versions function:

model_ids = modelstore.list_versions(
model_domain,
state_name=production_state

)

24 Chapter 11. Controlling model states

CHAPTER

TWELVE

MODELSTORE CLI COMMANDS

You can use modelstore (version > 0.0.71) from the command line to upload and download models:

To upload a model
python -m modelstore upload <domain> </path/to/file>

To download a model
python -m modelstore download <domain> <model-id>

Modelstore figures out how to read from your storage by looking for specific environment variables.

Your environment needs to define (1) a value for MODEL_STORE_STORAGE which tells modelstore what type of
storage you are using, and (2) values that depend on the specific type of storage that you are using.

All of these are summarised in the table below:

Table 1: Storage environment variables
Storage MODEL_STORE_STORAGEOther environment variables
AWS s3 aws-s3

MODEL_STORE_AWS_BUCKET
AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY

Azure Container azure-container

MODEL_STORE_AZURE_CONTAINER
AZURE_ACCOUNT_NAME
AZURE_ACCESS_KEY
AZURE_STORAGE_CONNECTION_STRING

Google Cloud
Storage

google-cloud-
storage

MODEL_STORE_GCP_PROJECT
MODEL_STORE_GCP_BUCKET

File system filesystem MODEL_STORE_ROOT

25

https://aws.amazon.com/s3/
https://docs.microsoft.com/en-us/azure/container-instances/
https://cloud.google.com/storage
https://cloud.google.com/storage

modelstore

26 Chapter 12. Modelstore CLI commands

CHAPTER

THIRTEEN

TROUBLESHOOTING

13.1 Common errors when setting up s3 storage

This page describes the steps you need to take to store models in s3.

Before you start, you will need to create the s3 bucket you want to use. The modelstore library does not create s3
buckets and assumes they exist already. To do this, you can follow the creating a bucket AWS documentation.

Next, install modelstore and boto3 in your Python environment:

pip install modelstore boto3

If you have not done this before, you will need to set up the AWS authentication credentials by following the boto3
configuration guide.

And you can then create a model store instance and point it to your bucket:

from modelstore import ModelStore

model_store = ModelStore.from_aws_s3("my-bucket")

The remainder of this page describes some common errors you may run into. If you need further support, please create
an issue on Github.

13.1.1 ModuleNotFoundError: boto3 is not installed

The model store library works with several different types of storage, and therefore does not install all of their libraries.
If you see a ModuleNotFoundError, then you need to install boto3.

pip install boto3

The current version of modelstore requires boto3>=1.6.16,<1.8.

27

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#configuration
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#configuration
https://github.com/operatorai/modelstore/issues
https://github.com/operatorai/modelstore/issues
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

modelstore

13.1.2 botocore.exceptions.NoCredentialsError: Unable to locate credentials

You will need to set up the AWS authentication credentials. As this documentation page describes, boto3 “looks at
various configuration locations until it finds configuration values.”

To start, follow the AWS documentation to get your access key and secret access key values. There are then two
approaches you can use here.

Option 1: run aws configure by following the boto3 configuration guide.

aws configure
AWS Access Key ID [None]: my-access-key
AWS Secret Access Key [None]: my-secret-access-key

Option 2: set environment variables.

export AWS_ACCESS_KEY_ID="my-access-key"
export AWS_SECRET_ACCESS_KEY="my-secret-access-key"

13.1.3 botocore.exceptions.ParamValidationError: Parameter validation failed

You’ll see this error if you are passing a bucket_name that boto3 cannot parse. Note: you do not need to include the
“s3://” in the bucket name.

>>> model_store = ModelStore.from_aws_s3("s3://my-bucket-name")
[...]
botocore.exceptions.ParamValidationError: Parameter validation failed:
Invalid bucket name "s3://my-bucket-name": Bucket name must match the regex "^[a-zA-Z0-9.
→˓\-_]{1,255}$" or be an ARN matching the regex "^arn:(aws).*:(s3|s3-object-lambda):[a-z\
→˓-0-9]*:[0-9]{12}:accesspoint[/:][a-zA-Z0-9\-.]{1,63}$|^arn:(aws).*:s3-outposts:[a-z\-0-
→˓9]+:[0-9]{12}:outpost[/:][a-zA-Z0-9\-]{1,63}[/:]accesspoint[/:][a-zA-Z0-9\-]{1,63}$"

13.1.4 Exception: Failed to set up the AWSStorage storage

This exception is raised if modelstore can’t read from the bucket you are pointing it to. With logging enabled, you will
see this line when you try to create a model store instance:

>>> model_store = ModelStore.from_aws_s3("my-bucket-name")
Unable to access bucket: <bucket-name>

[...]
Exception: Failed to set up the AWSStorage storage

To resolve this, you can check:

1. Does the bucket exist? If not, you can follow the creating a bucket AWS documentation.

2. Is there a typo in the bucket_name variable?

28 Chapter 13. Troubleshooting

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html
https://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html#access-keys-and-secret-access-keys
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#configuration
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html

modelstore

13.1.5 botocore.exceptions.EndpointConnectionError: Could not connect to the
endpoint URL

This exception is raised if modelstore can’t connect to the s3 bucket. One way this happens is if you specify a region
that is not a known value. The full list of regions is available on this AWS documentation page.

For example, if you use a region name, you’ll see an error:

>>> model_store = ModelStore.from_aws_s3(bucket_name=os.environ["AWS_BUCKET_NAME"],␣
→˓region="Frankfurt")
>>> model_store.list_domains()
[...]
raise EndpointConnectionError(endpoint_url=request.url, error=e)
botocore.exceptions.EndpointConnectionError: Could not connect to the endpoint URL:
→˓"https://operator-ai-modelstore-direct.s3.Frankfurt.amazonaws.com/?list-type=2&
→˓prefix=operatorai-model-store%2Fdomains&encoding-type=url"

But if you use the region code, it should not error:

>>> model_store = ModelStore.from_aws_s3(bucket_name=os.environ["AWS_BUCKET_NAME"],␣
→˓region="eu-central-1")
>>> model_store.list_domains()
['diabetes-boosting-demo']

13.1.6 Seeing another exception?

If you need further support, please create an issue on Github.

This documentation is open source. If you would like to add anything to it, please open a pull request on Github.

This documentation is open source. If you would like to add anything to it, please open a pull request on Github.

13.1. Common errors when setting up s3 storage 29

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://github.com/operatorai/modelstore/issues
https://github.com/operatorai/modelstore-docs
https://github.com/operatorai/modelstore-docs

modelstore

30 Chapter 13. Troubleshooting

CHAPTER

FOURTEEN

LICENSE

Copyright 2022 Neal Lathia

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in com-
pliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

31

http://www.apache.org/licenses/LICENSE-2.0

modelstore

32 Chapter 14. License

CHAPTER

FIFTEEN

CONTACT

If you have any questions or feedback, feel free to open an issue on Github or email me: neal.lathia@gmail.com or

33

https://github.com/operatorai/modelstore/issues

	Installing the modelstore library
	Quick Start
	Install using pip, import in your code
	Create a model store instance and point it to your storage
	Upload a model to the model store
	Load a model from the model store

	Uploading a scikit-learn model
	Key Concepts
	Model Archive
	Model Meta-data
	Domains
	Model State
	Storage

	Supported Machine Learning Libraries
	What to do if a library is not supported

	Supported Storage Types
	File system storage

	Additional upload functionality
	Uploading more than one model file
	Uploading extra files with the model

	Additional download functionality
	Providing read-only access
	Download a model from the model store

	Retrieving model and domain information
	Model domains
	Model states
	Model versions
	Models

	Deleting Models
	Controlling model states
	Create a state
	Set and unset a model’s state
	Find models by state

	Modelstore CLI commands
	Troubleshooting
	Common errors when setting up s3 storage
	ModuleNotFoundError: boto3 is not installed
	botocore.exceptions.NoCredentialsError: Unable to locate credentials
	botocore.exceptions.ParamValidationError: Parameter validation failed
	Exception: Failed to set up the AWSStorage storage
	botocore.exceptions.EndpointConnectionError: Could not connect to the endpoint URL
	Seeing another exception?

	License
	Contact

